Indicative Results and Progress on the Development of the Unified Single Solution Method for Fluid-structure Interaction Problems

نویسندگان

  • C. G. Giannopapa
  • G. Papadakis
چکیده

This paper presents the progress on the development of a novel unified solution method for solving strongly coupled fluid-structure interaction problems. The method has been developed and fully tested for solids in [1]. The new approach is based on continuum mechanics formulation for fluids and structures where both continua can be solved using the momentum and continuity equation. The difference between the two continua lies in the constitutive equations. In this framework a single set of equations is used for the simultaneous solution of both fluid and solid. The common equations are written such that velocity and pressure are unknown variables for both continua. The discretisation method used for the solution of the problems is finite volumes. The physical interface between the two continua is treated as an internal part of the computational domain and no explicit exchange of information is needed. The test case used to demonstrate the idea is wave propagation in liquid filled flexible vessels. The solution is fully implicit and transient. Results regarding pressure, velocity and wall distention at different times and various locations along the tube are presented. The method is stable and robust and can be used for the next step of development and validation against classical analytical and numerical models. NOMENCLATURE Co Courant number c m/sec wave speed D m diameter f Hz frequency h m thickness I unit tensor K Pa bulk modulus L m length F fluid p Pa pressure S solid t sec time U m/sec velocity ∆t s time step ∆x m grid interval η m/s dynamic viscosity λ Pa Lamé’s coefficient μ Pa Lamé’s coefficient ε strain tensor Ε Pa Young’s modulus ν Poisson ratio ρ kg/m density σ Pa Cauchy stress tensor τ Pa applied end shear ω Hz frequency of undamped oscillations INTRODUCTION Fluid structure interaction occurs in many areas of engineering (aerospace, civil or mechanical) as well as other scientific disciplines including medicine, biomechanics etc. During this interaction, the normal and shear stress due to the fluid flow act on the structure and cause it to deform which in turn affects the fluid flow and consequently the stress of the fluid. Thus, the response of the system can be determined only if the coupled problem is solved. In the conventional approach for fluid-structure interaction problems, the fluid and solid components are treated separately and information is exchanged at their interface. According to the conventional terminology, the current numerical methods can be grouped in two major categories: Partitioned methods and monolithic methods. Both methods use two separate sets of equations for fluid and solid. In Figure 1 a schematic description of these methods is depicted.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods

Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...

متن کامل

Presenting a Modified SPH Algorithm for Numerical Studies of Fluid-Structure Interaction Problems

A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid contacts. In current work, the modification of the utilized SPH concerns on removing the artificial viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of tensile and numeri...

متن کامل

Nonlinear Vibration Analysis of the Fluid-Filled Single Walled Carbon Nanotube with the Shell Model Based on the Nonlocal Elacticity Theory

Nonlinear vibration of a fluid-filled single walled carbon nanotube (SWCNT) with simply supported ends is investigated in this paper based on Von-Karman’s geometric nonlinearity and the simplified Donnell’s shell theory. The effects of the small scales are considered by using the nonlocal theory and the Galerkin's procedure is used to discretize partial differential equations of the governing i...

متن کامل

An effective method for eigen-problem solution of fluid-structure systems

Efficient mode shape extraction of fluid-structure systems is of particular interest in engineering. An efficient modified version of unsymmetric Lanczos method is proposed in this paper. The original unsymmetric Lanczos method was applied to general form of unsymmetric matrices, while the proposed method is developed particularly for the fluid-structure matrices. The method provides us with si...

متن کامل

Numerical Solution for Gate Induced Vibration Due to Under Flow Cavitation

Among the many force s to which hydraulic structures are exposed to, the forces induced by cavitation incident are of typical hydrodynamic unknown forces. The aim of this study is to define these forces as coupled fluid-structure interaction under two dynamic effects. The first dynamic effect which incorporates facilities for dealing with cavitation fluid is based on the appearance and bursting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007